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We use a finite set of fractal interpolation functions to generate multiresolution
analyses on L 2(1R) and Co(IR). These multiresolution analyses rely on the properties
of fractal functions such as self-affiniteness, existence of scaled coupled dilation
equations, and the non-integral box dimension of their graph. This dimension
serves as an additional parameter to better describe the small-scale structure of the
set to be approximated. Concrete examples will be given to illustrate these methods.
© 1992 Academic Press, Inc.

1. INTRODUCTION

In this paper we construct multiresolution analyses that are based on
fractal interpolation functions. The reason for choosing a finite set of such
functions is that they are self-affine, i.e., the graph is a finite union of affine
images of itself, and that they obey coupled dilation equations. The fact
that the graph of a fractal interpolation function has in general a
non-integral dimension d allows one to use d as an additional parameter
to further specify highly complex sets. Our approach differs from the
conventional one in that we use a finite set of functions to generate the
multiresolution analysis. This is partly motivated by the desire to take
into account the small-scale variation of functions that one wants to
approximate. The structure of this paper is as follows: In Section 2 we
briefly review some facts from fractal function and wavelet theory. In
Section 3 we introduce the multiresolution analyses, one on L 2(1R) and one
on Co(IR). The main results are listed there. Section 4 deals primarily with
the explicit construction of the set that generates the multiresolution
analysis. There we apply the decomposition and reconstruction algorithms
obtained from the multiresolution analyses to a concrete example.
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2. PRELIMINARIES
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In this section we review some basic definitions and results from fractal
function and wavelet theory.

2.1 Fractal Interpolation Functions

Let 0=XO<x 1 < .,. <XN= 1 and Yo, Yl' ..., YN be given real numbers.
For i = 1, ..., N let Wi: I x IR --+ I x IR be given by

(2.1 )

where 0 < ISil < 1 is given, and ai' ci, di, ei are determined by the
conditions wi(XO, Yo) = (Xi-I> Yi- d and Wi(X N, YN) = (Xi' y,.) yielding

d.= XNXi_l-XOXi.
I XN-Xo'

XN-Xo xN-XO

(2.2.a)

(2.2.b)

(2.2.c)

(2.2.d)

Note that (2.2.a) implies 0 < a i < 1. Let 11·110 be the norm on 1R2 defined by
II(x,Y)llo=lxl+OIYI, where 0 is chosen so that O<O<min i ((I-lai l)/
(1 + Icil)). Then it is easy to verify that Wi is a contraction in the norm
11·110' Let H denote the set of nonempty compact subsets of I x IR and ho the
Hausdorff metric on H generated by 11·110' Let W: H --+ H be defined by

N

W(U)= U wi(U)
i~l

(2.3 )

for any U E H. Then (see [1, 2]) it follows that W is a contraction on the
complete metric space (H, h()). Thus the Contraction Mapping Principle
implies that W has a unique fixed point G E H and that WOO

( U) --+ Gin ho
for any U E H. We call G self-affine since it is the union of affine images of
itself.

We next show that G is also the graph of a continuous function
f* : I --+ IR that interpolates the points (xo, Yo), ..., (x N' Y N)'
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Let C(I) denote continuous functions on such that

f(x;) = Y;, i=O, 1, ..., N. (2.4 )

Let Ui : 1--+ IR and Vi: Ix IR --+ IR be given by

u;(x)=a;x+d;

vi(x, y)=c;x+siy+ei

for i = 1, ..., N and (x, y) E I x IR. For f E C(I) we define

(2.5)

(2.6)

It follows from (2.2) that C/J: C(I) --+ C(I). Let s= max Is;1 < 1. Then (2.5)
and (2.6) imply that C/J is contractive in II 1100 with contractivity s. The
Contraction Mapping Principle implies that C/J has a unique fixed
point f* E C(I). It is easy to verify that W(graph(f*)) = graph(f*) and
hence G = graph(f*); f* is called a fractal interpolation function (FIF).
Throughout this paper we work with FIF for which Ax;= (xN-xo)/N,
Vi = 1, ..., N. We use the notation f = (Yo, , Y N)['0. ZN] to represent f and
indicate thatf(x;)=Yi' on [xo,xN], i=I, ,N.

Recall that the box dimension (sometimes also called the fractal
dimension or capacity) of a bounded set S ~ W is defined by

I
. 10gJV(e)
1m ,

,~o+ 10gl/e
provided this limit exists,

where JV(e) denotes the minimum number of n-dimensional e-balls needed
to cover S. The box dimension d of FIF's is given by the formula

N

L Is;1 a1- 1= 1
;= 1

(2.7)

in the case where 1: Is;1 > 1 and the interpolation points are non-collinear;
otherwise d = 1 (see [2, 3]).

2.2. Multiresolution Analysis and Wavelets

First we review the notion of multiresolution analysis [5, 6] and then we
generalize this notion for our purposes.

For a function cPEL2(1R) let cPk/(x) = 2- k
/
2cP(2- kx-I), k, IE7L. For kE7L

set
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The function ¢J is said to generate a multiresolution analysis of L 2(1R) if the
following conditions hold:

(a) . .. ::> V_I ::> Vo ::> VI::> .. - ;

(b) closL2 UkEZ Vk =L2(1R);

(c) closL2 nkEZ Vk = {O};

(d) VkE2, {¢Jk': IE2} is an unconditional (2.8)

basis of Vb i.e., there exists 0 < A::::; B < 00,

such that, V(C')'EZ E 12(2)

A II(c,)11,2(Z)::::; IlL, c,¢Jk,11 2::::;B II(c,)11,2(Z)'

An equivalent condition to (a) under the assumption (d) is that ¢J
satisfies a dilation equation of the form

¢J(x) = 21
/
2 L p,¢J(2x -I)

'EZ
(2.9)

that is, ¢J EclosL2 span {¢JI.' : 1E 2} = VI' (pJ E12(2).
Let Wk=Qk(L2(1R)) with Qk=Pk-Pk-1> kE2, where Pk denotes the

orthogonal projection onto Vk. Note that all the Wk's are scaled versions
of Wo, i.e.,

and that

(e) Vk = Vk+ I EEl Wk+ I> VkE 2;

(f) Wk 1- Wk -, k # k';

(g) L 2(1R)= EB kEZ Wk -

(2.10)

There exists a t/J E Wo (see [5, 6]) such that its integer-translates span
Wo, i.e.,

Wo= clos L2 span{t/J 0_ , : 1E 2 },

where t/J k' = 2 -k/2t/J(2 -k . -I), k, 1E 2. Then

Wk = clos L2 span{t/J k' : 1E 2 }-

(2.11 )

(2.12 )

t/J is called a wavelet basis relative to ¢J and the Wk are called the wavelet
spaces. Due to the orthogonality of the spaces Wk we may express fk E Vk
as

(2.13 )
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where gk+JE Wk +J, j= 1, ..., I, and fk+IE Vk + l . Note that gk+J= Qk+Jfb

j= 1, ... , I.
In case the {¢Jo. 1 : IE 7L} are orthonormal, this may be expressed recur­

sively on 12 (7L) as follows. Let c(k) E 12 (7L) and let fk = Llcl(k) ¢Jkl' Then

cI(k+ 1) = <fb ¢Jk+ I, I>

=L PI'_2I Cdk)
I'

Similarly, since t/J E V_I there exist a q E 12(7L) such that

t/J(X)=2- 1
/
2 L ql¢J(2x-/).

1

dl(k + 1) =L ql'-21 dl'(k).
I'

(2.14 )

(2.15 )

(2.16 )

3. MULTIRESOLUTION ANALYSES GENERATED BY FRACTAL FUNCTIONS

In this section we use FIF's to generate a sequence of nested subspaces.
Let 0 < lsi < 1 and N EN, N> 1, be fixed throughout this section.
We define

"I/o = "I/o(s, N) = {f: IR --+ IR : Vj E 7L

there exists a FIF g on [j, j + 1] with s =s i

1
and Ax;= N such that f 1(j.J+ I) = g I(j.J+ I)}' (3.1)

and "fk is characterized by

Note that f E "I/o is piecewise continuous with possible jump discontinuities
at XE 7L.

THEOREM 1. ... ;2 1'_1 ;2 "I/o ;2 ~;2 '" is a nested sequence of linear
subspaces.

Proof That "fk, k E 7L, is a linear space follows directly from Eqs. (2.2),
(2.4), (2.5), and (2.6). We remark that if J, !E"fk,

f(x) = Sf(U;-I(X)) + C;Ui-I(X) + ei,

!(x) = S!(Ui-I(X)) + CiU;I(X) + e;,
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for all xEui(l), and that by (2.2.b) and (2.2.d) the Ci, Ci, ei, and ei depend
linearly on Yo, ..., Yn' Hence the mapping {Yo, ..., Yn} --+ f is linear.

We will make use of the self-affiniteness of the graph of a FIF to show
that "fk 2 "fk + I' for all k E 1L. It suffices to prove this for k = O.

Let f E 't'; and let without loss of generality 1= [0, N]. Note that if
G = graph (f I I), then

N

G= U wi,(G)
;'=1

(32)

implies Wi(G)=U~~1 WioWi,oWi-I(Wi(G)), where Wi' i=I, ...,N, is as
in Section2.L Note that WioWi,oW i-

1 is of the form (2.1) and that
wi(G)=graph(fI[i_I,i])' Therefore, fl[i-I,i] is a FIF over [i-I, i], for
i = 1, ..., N. Hence f E "Y"o. I

Next we consider "fknL2(1R) and "fknCo(IR), kElL, where Co(lR)
denotes the set of all continuous functions on IR that vanish at infinity.

3.1. Multiresolution Analysis of L 2(1R)

Define Vk = "fk n L 2(IR) and let

{
(O, ..., 1, ..., 0)

en = o
on [0,1]
else,

where en is an (N + 1)-tuple describing the FIF and 1 is in the nth position,
n = 0, 1, ..., N. It then follows that

(3.3 )

There exists an orthonormal set of functions {¢J0, ..., ¢IN}, with supp(¢In) s;:

[O,IJ, n=O,I, ...,N, whose span equals span{en :n=O,I" ..,N}. Then
{¢JZ,:n=O, 1, ..., N; IElL} is an orthonormal basis for L 2(1R). We will
explicitly construct such an orthonormal set of functions in Section 4.

THEOREM 2. The set {¢J0, ..., ¢IN} generates a multiresolution analysis of
L 2(1R) in the following sense:

(a)

(b)

(c)

(d)
for Vk •

Proof

640j7l/1·8

... ::> V_I::> Vo ::> VI ... ;

closL2Ukd' Vk =L2(1R);

nkE,z Vk = {O};
Vk E 1L, the set {¢JZ,: n = 0, 1, ..., N; IE 1L} is an unconditional basis

(a) Part (a) follows directly from Theorem 1.
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(b) Since (1,1, ...,1)[0.1] = X[O.I], it is clear that Vk contains
X[IN-k, (I + I) N- k] and, therefore, Uk EZ V k contains all N-adic step functions
in L 2(1R). Thus UkEZ Vk is dense in U(IR).

(c) Let 0/1; = {j I[i, i + I] : f E Vo}, i E 7l... Since 0/1; is finite-dimensional
for i E 7l.., and since the norms 11,112 and II, 1100 when restricted to o/1i are
translation-invariant they are equivalent on Va. Thus if f E Vo then f is
bounded. Furthermore, iff E Vk then f is continuous on intervals of the form
(iNk, (i + 1) N k

), for all i E 7l.., Thus, if f E nkE Z Vk then f E Co(1R - {o} ). In
Theorem 3, part (c), we show that nkEz~nCo(IR)={constantfunc­
tions}. There we prove that if f is bounded and in nkEZ~' f(x)=
C I + C2H(X), where C I , C2 E IR and

H(x) = {I
-1

x>o
x~o.

However, since f E L 2(1R), C I = C2 = 0, Hence, if f E n kE Z Vb then f:= 0.

(d) This follows from the fact that {f/Jo, , .., r} is an orthonormal set
of functions. I

As in Section 2 let Wk be the orthogonal complement of Vk in Vk _ I' The
set {j E Vo : supp(f) ~ [0, I]} is spanned by the N + 1 functions f/Jo, ... , f/JN,

the set {j E Wo : supp(f) ~ [0, I]} by an orthonormal set {t/J0, ..., t/JN2- I }

of N 2
- 1 functions. Furthermore

Therefore,

Next we set up the decomposition algorithm for this multiresolution
analysis.

Let c(O) E [2( {O, 1, ..., N} x 7l..). Since f/Jn E Vo:::l VI and supp(f/Jn) ~ [0, 1],
there exist coefficients p7~', n, n' E {O, 1, ..., N}, [' E 7l.., such that

",n " nn'",n'
'1'1,1= ~ PI' 'I'O,I'+NI'

I', n'

To c(O) there corresponds a function f E Vo by setting

f = I c7(0) f/J~.I·
I, n

(3.6)

(3.7)
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Let Pd be the projection of f onto VI' i.e.,

Pd = L c7(l) ~7, I'

I, n

The coefficients c7( 1), n = 0, 1, "', N, IE Z are obtained as follows:

c7(1)= L ct(0)<~~:",~7,1>
I', n'

= L P7~~NICt(0).
I', n'

Thus we can define an operator

G: 12
( {a, 1, "., N} x Z) ~ 12

( {a, 1, ..., N} x Z)

by

Gc(O)=c(I).

111

(3.8)

(3.9)

(3.10)

It is clear that this procedure can be iterated any number of times, and one
has in general,

c(k + 1) = Gc(k). (3.11 )

The (c/(k + 1))/E z are the coefficients of f of its expansion in Vk • Similarly,
if Qd denotes the projection of f onto WI' we have

Qd= L d,!,(I) t/J~/'
I, n

m = 0, 1, "., N 2
- 1, (3.12 )

and, since WI C Vo, there exist coefficients q,;n', mE {a, 1, "., N 2
- I},

n' E {a, 1, "., N}, I' E Z, such that

Il,m ~ mn',I,n'
'1'1,1= L.. ql' 'I'O,I'+NI'

I', n'

Hence, as above, one finds

d,!,(I) = L q';~NICnO).
1', n'

(3.13 )

(3.14 )

Thus there exists an operator H: 12
( {a, 1, "., N} x Z) ~ 12

( {a, 1, ..., N 2 - I}
x Z) such that

d(I)=Hc(O). (3.15)
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In general,
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d(k + 1) =Hc(k), kE7L (3.16)

Equations (3.11) and (3.16) constitute a "pyramid-scheme" in the sense of
[5, 6, 8]. Graphically, this decomposition algorithm can be represented as
in Fig. 1.

Given c(l)E/ 2({0, 1, ...,N}xa') and d(I)E/ 2({0, 1, ...,N2 -1}xa') we
can reconstruct c(O) as follows. Let

f= L c7:(l)tP7:r+ L d';'(I)l/<r·
r,n' r,m'

Then using (3.6), (3.9), and (3.13) we obtain

c7(0) = (f, tP~, t> = L ct(l) p7~Nr + L d';'(I) Q1-"',.r
r,n' r,m'

or

c(O) = G*c(l) + H*d(I), (3.17)

where G* and H* are the adjoints of G and H, respectively. In general, we
have

c(k)=G*c(k+ 1)+H*d(k+ 1), kEa'. (3.18 )

3.2. Multiresolution Analysis on Co(ll~)

Define Vk =~ n Co(lR). Note that f E~ is also in Vk if it is bounded
and continuous at the endpoints of the intervals [INk, (l + 1) NkJ, k, IEa'.
We can generate a basis for Vo using the integer-translates of the functions
tP° = eO + e~ -I' tPJ = el , j = 1, ..., N - 1, where the en, n = 0, ..., N, are defined
as in Section 3.1. We then obtain

(here we are dropping the normalization factor N- 1/2).

c(O) -- c(l) -- c(2) -- -- c(k)

d(l) d(2)

FIGURE 1

d(k)
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(3.20)

THEOREM 3. The set {¢J0, ..., ¢IN - I} generates a multiresolution analysis
of Co(ll~) as follows:

(a) ... V_I::J Vo::J VI::J ... ;

(b) clOSCo(Ul) UkEZ Vk = Co(l~);

(c) nkE Z Vk= {constant functions}

(d) Vk E Z, the set {¢JZ/: n = 0, 1, ..., N - 1, IE Z} is an unconditional
basis for Vk, i.e., there exist 0 < A ~ B < 00 such that

A Ilcll/oo(z) ~ II t c7 ¢JZ1:o ~ B Ilcll/oo(z)'

where Z = {O, 1, ..., N - I} x Z.

Proof (a) Part (a) follows again from Theorem 1.

(b) By choosing the interpolation points collinear on each interval of
the form [INk, (l + 1) N k], I, k E Z, we generate a bounded piecewise linear
function on IR. Thus Vk contains all bounded functions that are piecewise
linear on [IN k, (l + 1) N k], k, IE Z. Since N k --+ 0 as k --+ - 00, Uk e Z Vk is
dense in Co(IR).

(c) Clearly, any constant function is in Vb for all k E Z. Let
fEnkeZ Vk· For k=O, 1,2, ... let cPk be given by (2.6) with 1= [O,Nk]
and Yi=fUNk- I

), i=O, 1, ..., N. Let Lk be the linear interpolant through
(0, f(O)) and (O,f(N k)). Since fE Vk_ 1 II Vk it is easy to show that
cPk(Ld I[O,Nk-l]=Lk- 1 l[o,Nk-l], and thus for any O~m~k cPmo ... a
cPk(Ld 1[0, Nm-l] = Lm 1[0, Nm-l]. Note that f 1[0, Ni] is a fixed point of cPj for
all j = 0, 1,2, .... Thus

11(/ - L m ) 1[0, Nm-l]11 00

= IlcPm
o ... ocPk(f) l[o,Nm-l]-cPmO ... ocPk(Lm) l[o,Nm-l]lloo

~sk-m+ I 11(/ - Lk) 1[0, Nk]lloo ~ 2sk- m+I Ilflloo-

Letting k --+ 00 we get f 1[0, Nm-l] = Lm 1[0, Nm-1], and thus f 1[0, (0) = f(O).
Similarly, one shows f 1(_ 00, 0] = f(O). The result now follows.

(d) Let

and
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We define subspaces Wk so that Vk EB Wk = Vk ~ I' k E lL. A possible choice
for Wo is given by

Wo=span{tP~I,I: n= 1, ..., N-1; IElL}, (3.21 )

Thus we can choose the r~ I, I' that are supported on [0, 1] and their
integer-translates to generate Woo Hence we set

(3.22)

where m = I(N -1) + n, n = 1, ..., N - 1, and 1=0, 1, ..., N - 1. Then

Wk = span{ l/!;;'I: m = 1, ,.., N(N -1); IE lL}. (3.23)

Note that for any f E Vo

and in particular,

Define

f= Lf(/+~) tP~.1
I, n

(3.24 )

(3.25 )

(3.26)

with n = 1, ..., N - 1; n' = 0, 1, ..., N -1, and I' E lL.
Let us now look at the decomposition and reconstruction algorithm.

Suppose c(O) E loo(Z) and let f = LI, n c7(0) tP~, I' Then as above there exists
the decomposition

L c7(0)tP~,I= L ctO)tP7:1'+ L d't'l/!~'I" (3.27)
I, n 1'. n' 1', m'

where m'=I"(N-1)+n', 1"=0, 1,oo.,N-1. Using (3.22), (3.25), and
(3.26) we obtain after some algebra

and by (3.27)

d l'(N ~ I) + n'( 1) n' (0) "0 (0) nOOn'
1 =C1+1' - L. Cn"+NI" PI+I'~NI'"

I", n"

(3.28)

(3.29)
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where n' = 1, ..., N -1, I' = 0,1, ..., N -1, I, I" E lL. Note that (3.28) and
(3.29) describe both the decomposition and reconstruction algorithm. How
to proceed from level k to k + 1, k ElL, should now be clear.

4. EXAMPLES

In this section we look at two concrete examples which will illustrate the
above-introduced multiresolution analyses.

4.1. Example 1 (Vk =~ n L 2(1R))

Let Ui and Vi be given as in (2.5) with s i = s, for all i = 1, ..., N. Note that
(2.6) implies that

f*(x)=sf*(u;-l(x))+CiUi~l(x)+ei'XE [Xi-I, X;], (4.1)

i= 1, ..., N.
To calculate the inner-product of two FIF's we need the following result.

PROPOSITION. Let f* and g* be two FIF's interpolating {(xj ' Yj) :
j=O, 1, ..., N} and {(Xj' Yj) :j=O, 1, ..., N}, respectively. Assume that xo=O
and X N = 1. Then

( f*(x) g*(x) dx

[
2:7=1 ai[(siciMl + SieiMO+SiCiM l +SieiMO)]

+ (c i+ ci)/3 + (cie i+ eic;)/2 + eie;]

where

(4.2)

and Mo and M1 are the corresponding moments of y*.

Remark. refers to g.
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Proof The proof makes use of (4.1).

( f*(x) g*(x) dx

= L: r f*(x) g*(x) dx
i XI~1

f
X'

= L: . Vi(Ui-I(X), f*(Ui-I(X))) Vi(Ui-I(X), g*(Ui-I(X))) dx.
i X1_l

Now let ~i=Ui-I(X). Then the above integral reduces to

After some considerable algebra, we arrive at (4.2). I
Using the above proposition we now obtain an orthonormal basis.
Let N=2, s=!, and let eO=(I,O,O)[O,I], e l =(O,I,O)[o,I], and

e2
= (0, 0, 1)[0. I]' Set ~o = el, ~I = eO - e2, and determine ~2 by requiring

These conditions yield

3

2

<Po

(4.3 )

(4.4)

-1
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Normalizing {~o, ~1, ~2} yields the functions {1,60, 1,61,1,62} depicted below
in Fig. 2.

Figure 3 shows 128 values obtained from a row of a digitized
photograph plotted at 0, !, 1, ~, ..., 64.

Let f be the unique function in Vo that interpolates the data on [0, 64]
and vanishes outside this interval, and let c(O) be the coefficients in the
expansion of f as in (3.7). Note that for 1<0 or I> 64 c7(0) = O. Using
the pyramid scheme (3.11) and (3.16) we decompose the data into

­....
0.8

0.7

a ,.-.. ... ...
.",......#.....

..........
....

..-...

0.6

0.5

•........
..--.-

: 10-- ...-
20 30

.- ...

40 50

......
60

0.8

0.7

0.6

0.5

b

40 60 80 100 120

FIG. 3. (a) The data used in Examples 1 and 2; (b) the above data points linearly
interpolated.
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d(l), ..., d(6), and c(6). For illustrative purposes we filter the decomposed
data by setting to zero the d-coefficients with Id7(k)1 <0.02 and
Id~(k)1 < 0.01, respectively. Applying (3.18) we reconstruct the filtered
coefficients C(O) from which we obtain the filtered data as shown in Figs. 4
and 5, respectively.

4.2. Example 2 (Vk =~ n Co(lR))

Let us again choose N = 2 and s =~. We will reconstruct the same data
as in Example 1 above.

0.8

0.7

0.6

0.8

0.7

0.6

0.5

a

b

40

40

60

60

80

80

100

100

120

120

FIG. 4. (a) The reconstructed data with Id(k)\ <0.02 deleted; (b) the reconstructed data
with Id(k)1 <0.01 deleted.
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(4.5)

Let us briefly illustrate how this analysis works. Suppose {Yo, ..., Y4} is
the set of y-values for five equally spaced data points on [0, 1]. If
(Yo, Yl' Y2)[0.1/2] and (Y2, YJ, Y4)[1/2.1] are the FIF's on [0, nand n, 1],
respectively, then (Yo, Y2, Y4)[0.1] is the FIF on [0,1]. Furthermore,
(0, dj, 0)[0.1/2] and (0, d2 , 0)[1/2,1] is the wavelet function on [0, nand
n, 1], respectively, where d 1 and d2 are given by

d
_ (1 - s) Yo + (1 + 2s) Y2 - sy4

l-Yl-
2

d _ (-s)Yo+(1+2s)Y2+(I-s)Y4
2-YJ- 2 .

0.8 a

0.7

0.6

0.5

40 60 80 100 120

0.8

0.7

0.6

0.5

b

40 60 80 100 120

FIG. 5. (a) The reconstructed data with Id(k)I<0.02 deleted; (b) the reconstructed data
with Id(k)1 < 0.01 deleted.
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Figure 5 shows this reconstructed data C(O) from c(6) and d(6), again
deleting all the d,(k) with Id,(k)1 <0.02 and Id,(k)1 <0.01, respectively.
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